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Abstract. In most supersymmetric theories, charginos χ̃±
1,2, mixtures of charged color-neutral gauginos and

higgsinos, belong to the class of the lightest supersymmetric particles. They are easy to observe at e+e−

colliders. By measuring the total cross sections and the left–right asymmetries with polarized electron
beams in e+e− → χ̃−

i χ̃+
j [i, j = 1, 2], the chargino masses and the gaugino–higgsino mixing angles can be

determined. From these observables the fundamental SUSY parameters can be derived: the SU(2) gaugino
mass M2, the modulus |µ| and cos Φµ of the higgsino mass parameter, and tan β = v2/v1, the ratio of
the vacuum expectation values of the two neutral Higgs doublet fields. The solutions are unique; the CP-
violating phase Φµ can be determined uniquely by analyzing effects due to the normal polarization of the
charginos.

1 Introduction

In supersymmetric theories, the spin-1/2 partners of the
W bosons and the charged Higgs bosons, W̃± and H̃±,
mix to form chargino mass eigenstates χ̃±

1,2. The chargino
mass matrix [1] is given in the (W̃−, H̃−) basis by

MC =

(
M2

√
2mW cos β√

2mW sinβ µ

)
(1)

which is built up by the fundamental supersymmetry
(SUSY) parameters: the SU(2) gaugino mass M2, the hig-
gsino mass parameter µ, and the ratio tanβ = v2/v1 of the
vacuum expectation values of the two neutral Higgs fields
which break the electroweak symmetry. In CP-nonin-
variant theories, the gaugino mass M2 and the higgsino
mass parameter µ can be complex. However, by repara-
metrization of the fields, M2 can be assumed real and pos-
itive without loss of generality so that the only non-trivial
invariant phase is attributed to µ:

µ = |µ|eiΦµ (2)

The angle Φµ can vary between 0 and 2π. Once charginos
are discovered, the experimental analysis of their proper-
ties, production and decay mechanisms will therefore re-
veal the basic structure of the underlying supersymmetric
theory.

Charginos are produced in e+e− collisions, either in
diagonal or in mixed pairs [2]–[6]. In the present analysis,

we will focus on all combinations of chargino pairs χ̃±
1,2 in

e+e− collisions:

e+e− → χ̃−
i χ̃+

j [i, j = 1, 2]

If the collider energy is sufficient to produce the two
chargino states in pairs, the underlying fundamental
SUSY parameters, M2, |µ| and tanβ, can be extracted
unambiguously from the masses mχ̃±

1,2
, the total produc-

tion cross sections, and the left-right (LR) asymmetries
with polarized electron beams, while the phase Φµ is de-
termined up to a twofold ambiguity Φµ ↔ 2π − Φµ. [This
ambiguity can be resolved by measuring manifestly CP-
noninvariant observables, see [7], related to the normal
polarization of the charginos.]

This analysis of the chargino sector is independent of
the structure of the neutralino sector, which is potentially
more complex than the form encountered in the Minimal
Supersymmetric Standard Model (MSSM). The structure
of the chargino sector, by contrast, is isomorphic to the
form of the MSSM for a large class of supersymmetric
theories.

Moreover, from the energy distribution of the final par-
ticles in the decay of the lightest chargino, the mass of the
lightest neutralino can be measured; this allows us to de-
termine the other U(1) gaugino mass parameter M1 if this
parameter is real. If not, additional information on the
phase of M1 must be derived from observables involving
the heavier neutralinos.

In summary: if the chargino/neutralino sector is CP-
invariant, all fundamental gaugino parameters can be de-
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rived from the masses and cross sections of the chargino
sector, supplemented by the mass of the lightest neutra-
lino. In CP-noninvariant theories, the phase of µ can be de-
termined up to a twofold ambiguity by measuring CP-even
observables; the ambiguity can be resolved by analyzing
manifestly CP-noninvariant observables. The phase of M1
can only be obtained by exploiting observables involving
heavier neutralino states.

The analysis will be based strictly on low-energy
SUSY. Once these basic parameters have been extracted
experimentally, they may be confronted, for instance, with
the ensemble of relations predicted in Grand Unified The-
ories. The paper will be divided into six parts. In Sect. 2
we recapitulate the central elements of the mixing formal-
ism for the charged gauginos and higgsinos. In Sect. 3 the
cross sections for chargino production, the left–right asym-
metries, and the polarization vectors of the charginos are
given. In Sect. 4 we describe a phenomenological analysis
based on a specific mSUGRA scenario to exemplify the
procedure for extracting the fundamental SUSY param-
eters in a model-independent way. In Sect. 5 we briefly
comment on the possibility of extracting the U(1) gaug-
ino mass M1 from the lightest neutralino mass measured
in the decay χ̃±

1 → W± + χ̃0
1. Conclusions are given in

Sect. 6.

2 Mixing formalism

Since the chargino mass matrix MC is not symmetric, two
different unitary matrices acting on the left- and right-
chiral (W̃ , H̃) states are needed to diagonalize the matrix:

UL,R

(
W̃−

H̃−

)
L,R

=

(
χ̃−

1

χ̃−
2

)
L,R

(3)

The unitary matrices UL and UR can be parametrized in
the following way [7]:

UL =

(
cos φL e−iβL sinφL

−eiβL sinφL cos φL

)

UR =

(
eiγ1 0
0 eiγ2

)(
cos φR e−iβR sinφR

−eiβR sinφR cos φR

)
(4)

The eigenvalues m2
χ̃±

1,2
are given by

m2
χ̃±

1,2
=

1
2
[
M2

2 + |µ|2 + 2m2
W ∓ ∆C

]
(5)

with ∆C involving the phase Φµ:

∆C =
√

(M2
2

−|µ|2)2+4m4
W

cos2 2β+4m2
W

(M2
2
+|µ|2)+8m2

W
M2|µ| sin 2β cos Φµ

(6)

The quantity ∆C determines the difference of the two
chargino masses: ∆C = m2

χ̃±
2

−m2
χ̃±

1
. The four phase angles

{βL, βR, γ1, γ2} are not independent but can be expressed
in terms of the invariant angle Φµ:

tanβL = − sinΦµ

cos Φµ + M2
|µ| cot β

tanβR = +
sinΦµ

cos Φµ + M2
|µ| tanβ

tan γ1 = +
sinΦµ

cos Φµ +
M2(m2

χ̃
±
1

−|µ|2)
|µ|m2

W
sin 2β

tan γ2 = − sinΦµ

cos Φµ + M2m2
W

sin 2β

|µ|(m2
χ̃

±
2

−M2
2 )

(7)

All four phase angles vanish in CP-invariant theories for
which Φµ → 0 or π. The rotation angles φL and φR satisfy
the relations:

cos 2φL=−
M2

2 −|µ|2−2m2
W

cos 2β

∆C

sin 2φL=−
2mW

√
M2

2
+|µ|2+(M2

2
−|µ|2) cos 2β+2M2|µ| sin 2β cos Φµ

∆C

and

cos 2φR=−
M2

2 −|µ|2+2m2
W

cos 2β

∆C

sin 2φR=−
2mW

√
M2

2
+|µ|2−(M2

2
−|µ|2) cos 2β+2M2|µ| sin 2β cos Φµ

∆C

(8)

As a consequence of possible field redefinitions, the pa-
rameters tan β and M2 can be chosen real and positive.

The fundamental SUSY parameters M2, |µ|, tanβ and
the phase parameter cos Φµ can be extracted from the
chargino χ̃±

1,2 parameters: the masses mχ̃±
1,2

and the two
mixing angles φL and φR of the left- and right-chiral com-
ponents of the wave function. These mixing angles are
physical observables and they can be measured, as well
as the chargino masses mχ̃±

1,2
, in the processes e+e− →

χ̃−
i χ̃+

j [i, j = 1, 2].
The two angles φL and φR and the nontrivial phase an-

gles {βL, βR, γ1, γ2} define the couplings of the chargino-
chargino-Z vertices and the electron-sneutrino-chargino
vertex:

〈χ̃−
1L|Z|χ̃−

1L〉 = − e

sW cW

[
s2

W − 3
4

− 1
4

cos 2φL

]

〈χ̃−
1L|Z|χ̃−

2L〉 = +
e

4sW cW
e−iβL sin 2φL

〈χ̃−
2L|Z|χ̃−

2L〉 = − e

sW cW

[
s2

W − 3
4

+
1
4

cos 2φL

]

〈χ̃−
1R|Z|χ̃−

1R〉 = − e

sW cW

[
s2

W − 3
4

− 1
4

cos 2φR

]

〈χ̃−
1R|Z|χ̃−

2R〉 = +
e

4sW cW
e−i(βR−γ1+γ2) sin 2φR

〈χ̃−
2R|Z|χ̃−

2R〉 = − e

sW cW

[
s2

W − 3
4

+
1
4

cos 2φR

]
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Fig. 1. The three exchange mechanisms con-
tributing to the production of chargino pairs
χ̃−

i χ̃+
j in e+e− annihilation

〈χ̃−
1R|ν̃|e−

L 〉 = − e

sW
eiγ1 cos φR

〈χ̃−
2R|ν̃|e−

L 〉 = +
e

sW
ei(βR+γ2) sinφR (9)

where s2
W = 1 − c2

W ≡ sin2 θW . The coupling to the
higgsino component, being proportional to the electron
mass, has been neglected in the sneutrino vertex; the sneu-
trino couples only to left-handed electrons. Note that the
CP-noninvariant phase Φµ enters the vertices through the
phase angles which have been expressed in terms of the
fundamental SUSY parameters in (7). Since the photon-
chargino vertex is diagonal, it does not depend on the
mixing angles:

〈χ̃−
iL,R|γ|χ̃−

jL,R〉 = eδij (10)

The parameter e is the electromagnetic coupling which
will be taken at an effective scale identified with the c.m.
energy

√
s.

3 Chargino pair-production

The process e+e− → χ̃−
i χ̃+

j is generated by the three
mechanisms shown in Fig. 1: s-channel γ and Z exchanges,
and t-channel ν̃ exchange. The transition matrix element,
after a Fierz transformation of the ν̃-exchange amplitude,

T
(
e+e− → χ̃−

i χ̃+
j

)
=

e2

s
Qαβ

[
v̄(e+)γµPαu(e−)

]
× [ū(χ̃−

i )γµPβv(χ̃+
j )
]

(11)

can be expressed in terms of four bilinear charges, defined
by the chiralities α, β = L, R of the associated lepton and
chargino currents

(i) χ̃−
1 χ̃+

1

QLL = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
− 1

4
cos 2φL

)

QLR = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
− 1

4
cos 2φR

)

+
Dν̃

4s2
W

(1 + cos 2φR)

QRL = 1 +
DZ

c2
W

(
s2

W − 3
4

− 1
4

cos 2φL

)

QRR = 1 +
DZ

c2
W

(
s2

W − 3
4

− 1
4

cos 2φR

)
(12)

(ii) χ̃−
1 χ̃+

2

QLL =
DZ

4s2
W c2

W

(s2
W − 1

2
)e−iβL sin 2φL

QLR =
DZ

4s2
W c2

W

(s2
W − 1

2
)e−i(βR−γ1+γ2) sin 2φR

+
Dν̃

4s2
W

e−i(βR−γ1+γ2) sin 2φR

QRL =
DZ

4c2
W

e−iβL sin 2φL

QRR =
DZ

4c2
W

e−i(βR−γ1+γ2) sin 2φR (13)

(iii) χ̃−
2 χ̃+

2

QLL = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
+

1
4

cos 2φL

)

QLR = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
+

1
4

cos 2φR

)

+
Dν̃

4s2
W

(1 − cos 2φR)

QRL = 1 +
DZ

c2
W

(
s2

W − 3
4

+
1
4

cos 2φL

)

QRR = 1 +
DZ

c2
W

(
s2

W − 3
4

+
1
4

cos 2φR

)
(14)

The first index in Qαβ refers to the chirality of the e±

current, the second index to the chirality of the χ̃−
i /χ̃+

j
current. The ν̃ exchange only affects the LR chirality
charge while all other amplitudes are built up by γ and
Z exchanges only. Dν̃ denotes the sneutrino propagator
Dν̃ = s/(t − m2

ν̃), and DZ the Z propagator DZ = s/(s −
m2

Z + imZΓZ); the non-zero Z width can in general be ne-
glected for the energies considered in the present analysis
so that the charges are rendered complex in the present
Born approximation only through the CP-noninvariant
phases.

For the sake of convenience we also introduce the eight
quartic charges [8] defined in Table 1. These charges cor-
respond to the eight independent helicity amplitudes de-
scribing the chargino production processes for massless
electrons/positrons.

The charges Q1 to Q4 are manifestly parity-even, i.e.,
invariant under space reflection; Q′

1 to Q′
4 are parity-odd.
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Table 1. Quartic charges determining the cross section and
polarization vectors in pair-production of charginos in e+e−

collisions. Detailed comments are given in the text

P CP Quartic Charges

Q1 = 1
4

[
|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2

]
even even Q2 = 1

2Re [QRRQ∗
RL + QLLQ∗

LR]

Q3 = 1
4

[
|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2

]
odd Q4 = 1

2 Im [QRRQ∗
RL + QLLQ∗

LR]

Q′
1 = 1

4

[
|QRR|2 + |QRL|2 − |QLR|2 − |QLL|2

]
odd even Q′

2 = 1
2Re [QRRQ∗

RL − QLLQ∗
LR]

Q′
3 = 1

4

[
|QRR|2 + |QLR|2 − |QRL|2 − |QLL|2

]
odd Q′

4 = 1
2 Im [QRRQ∗

RL − QLLQ∗
LR]

The charges Q1 to Q3 and Q′
1 to Q′

3 are CP invariant1
while Q4 and Q′

4 change sign under CP transformations.
The CP invariance of Q2 and Q′

2 can easily be shown by
noting that

cos(βL − βR + γ1 − γ2) sin 2φL sin 2φR (15)

=
m2

χ̃±
1

+ m2
χ̃±

2

2mχ̃±
1
mχ̃±

2

(1 − cos 2φL cos 2φR) − 2m2
W

mχ̃±
1
mχ̃±

2

Thus, all the cross sections e+e− → χ̃−
i χ̃+

j for any combi-
nation of pairs (ij) depend only on cos 2φL and cos 2φR.
For polarized electron beams the sums and differences of
the quartic charges are restricted to either L or R compo-
nents (first index) of the e± currents.

The measurement of the quartic charges Q1 to Q′
3

in the total cross sections and left–right asymmetries for
equal and mixed chargino pair-production allows us to ex-
tract the two terms cos 2φL and cos 2φR unambiguously
as will be demonstrated explicitly in the following section.

The CP-noninvariant charges Q4 and Q′
4 vanish for

equal chargino pairs χ̃−
1 χ̃+

1 and χ̃−
2 χ̃+

2 . They can be deter-
mined only by measuring observables related to the nor-
mal components of the χ̃±

1,2 polarization vectors in mixed
e+e− → χ̃−

1 χ̃+
2 /χ̃−

2 χ̃+
1 pair-production [7].

Defining the χ̃−
i production angle with respect to the

electron flight-direction by Θ, the helicity amplitudes can
be derived from (11). While electron and positron helici-
ties are opposite to each other in all amplitudes, the χ̃−

i

and χ̃+
j helicities are in general not correlated due to the

non-zero masses of the particles; amplitudes with equal
χ̃−

i and χ̃+
j helicities vanish only ∝ mχ̃∓

i,j
/
√

s for asymp-
totic energies. Denoting the electron helicity by the first
index, and the χ̃−

i and χ̃+
j helicities by the remaining two

indices, λi and λj , respectively, the helicity amplitudes

1 When expressed in terms of the fundamental SUSY param-
eters, they do depend nevertheless indirectly on cos Φµ through
cos 2φL,R, in the same way as the masses depend indirectly on
this parameter.

T (σ;λi, λj) = 2πα〈σ;λiλj〉 are given as follows [9],

〈+; ++〉 = −
[
QRR

√
1 − η2

+ + QRL

√
1 − η2−

]
sinΘ

〈+; +−〉 = −
[
QRR

√
(1 + η+)(1 + η−)

+QRL

√
(1 − η+)(1 − η−)

]
(1 + cos Θ)

〈+;−+〉 = +
[
QRR

√
(1 − η+)(1 − η−)

+QRL

√
(1 + η+)(1 + η−)

]
(1 − cos Θ) (16)

〈+;−−〉 = +
[
QRR

√
1 − η2− + QRL

√
1 − η2

+

]
sinΘ

and

〈−; ++〉 = −
[
QLR

√
1 − η2

+ + QLL

√
1 − η2−

]
sinΘ

〈−; +−〉 = +
[
QLR

√
(1 + η+)(1 + η−)

+QLL

√
(1 − η+)(1 − η−)

]
(1 − cos Θ)

〈−;−+〉 = −
[
QLR

√
(1 − η+)(1 − η−)

+QLL

√
(1 + η+)(1 + η−)

]
(1 + cos Θ) (17)

〈−;−−〉 = +
[
QLR

√
1 − η2− + QLL

√
1 − η2

+

]
sinΘ

where η± = λ1/2(1, µ2
i , µ

2
j ) ± (µ2

i − µ2
j ) with the 2-body

phase-space function λ(1, µ2
i , µ

2
j ) = [1 − (µi + µj)2][1 −

(µi − µj)2] and the reduced masses µ2
i = m2

χ̃±
i

/s. From

these amplitudes the χ̃−
i χ̃+

j production cross sections and
the left–right asymmetries can be determined.

3.1 Production cross sections

The unpolarized differential cross section is given by the
average/sum over the helicities:

dσ

d cos Θ
(e+e− → χ̃−

i χ̃+
j ) =

πα2

32s
λ1/2

×
∑

σλiλj

|〈σ;λiλj〉|2 (18)

where λ is the two-body phase space function introduced
above. Carrying out the sum, the following expression for
the cross section in terms of the quartic charges can be
derived:

dσ

d cos Θ
(e+e− → χ̃−

i χ̃+
j )

=
πα2

2s
λ1/2

{[
1 − (µ2

i − µ2
j )

2 + λ cos2 Θ
]
Q1

+4µiµjQ2 + 2λ1/2Q3 cos Θ

}
(19)
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Fig. 2. The cross sections for the production of charginos
as a function of the c.m. energy a with the set [tan β =
3, m0 = 100GeV, M1/2 = 200GeV] and b with the set [tan β =
30, m0 = 160GeV, M1/2 = 200GeV]: solid line for χ̃−

1 χ̃+
1 pro-

duction, dashed line for χ̃−
1 χ̃+

2 production, and dot-dashed line
for χ̃−

2 χ̃+
2 production
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(a) tanβ=3, m0=100 GeV, M1/2=200 GeV
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(b) tanβ=30, m0=160 GeV, M1/2=200 GeV

Fig. 3. The angular distributions as a function of the scat-
tering angle at a c.m. energy of 800 GeV a with the set
[tan β = 3, m0 = 100GeV, M1/2 = 200GeV] and b with the
set [tan β = 30, m0 = 160GeV, M1/2 = 200GeV]: solid line
for χ̃−

1 χ̃+
1 production, dashed line for χ̃−

1 χ̃+
2 production, and

dot-dashed line for χ̃−
2 χ̃+

2 production

If the production angle could be measured unambiguously
on an event-by-event basis, the quartic charges could be
extracted directly from the angular dependence of the
cross section at a single energy. After integration over the
production angle Θ, the total cross section still depends
on Q3 since t-channel sneutrino exchange gives rise to a
non-linear forward–backward asymmetric angular depen-
dence.

The total production cross section is shown in Fig. 2
as a function of the c.m. energy for a fixed sneutrino mass.
The sneutrino mass is assumed to be predetermined from
direct production e+e− → ν̃eν̃e. The curves, which should
be interpreted as characteristic examples, are based on the
two CP-invariant mSUGRA scenarios introduced in [10].
They correspond to a small and a large tanβ solution for
the universal gaugino and scalar masses:

RR1 : small tanβ = 3 : (m0, M 1
2
)

= (100 GeV, 200 GeV)
RR2 : large tanβ = 30 : (m0, M 1

2
)

= (160 GeV, 200 GeV) (20)

Table 2. Gaugino and higgsino mass parameters, mass val-
ues of the charginos and the lightest neutralino, and of the
sneutrino in the reference points of the mSUGRA scenarios
introduced in [10]

m̃ [GeV] RR1 : tan β = 3 RR2 : tan β = 30

M2 152 150

µ 316 263

χ̃±
1 128 132

χ̃±
2 346 295

χ̃0
1 70 72

ν̃ 166 206

The induced chargino χ̃±
1,2, neutralino χ̃0

1, and sneutrino
masses ν̃ are collected in Table 2. The CP-phase Φµ is set
to zero. The sharp rise of the production cross sections in
Fig. 2 allows us to measure the chargino mass mχ̃±

1,2
very

precisely [4,11]. Figure 3 exhibits the angular distribution
as a function of the scattering angle for the parameters of
Table 2 at the c.m. energy 800 GeV. The peak in the near-
forward region is due to the t-channel sneutrino exchange.

3.2 Left-right asymmetries

Switching the longitudinal electron polarization yields a
left-right (LR) asymmetry ALR, defined as

ALR =
1
4

∑
λiλj

[
|〈+;λiλj〉|2 − |〈−;λiλj〉|2

]
/N (21)

with the normalization

N =
1
4

∑
λiλj

[
|〈+;λiλj〉|2 + |〈−;λiλj〉|2

]
(22)

The LR asymmetry ALR can be readily expressed in terms
of the quartic charges,

ALR = 4
{

[1 − (µ2
i − µ2

j )
2 + λ cos2 Θ]Q′

1

+4µiµjQ
′
2 + 2λ1/2 cos ΘQ′

3

}
/N (23)

with, correspondingly,

N = 4
{

[1 − (µ2
i − µ2

j )
2 + λ cos2 Θ]Q1

+4µiµjQ2 + 2λ1/2 cos ΘQ3

}
(24)

In Fig. 4 the LR asymmetries are depicted as a function
of the scattering angle for the parameters of Table 2 at the
c.m. energy 800 GeV. The large negative asymmetry for
χ̃−

1 χ̃+
1 production in the forward direction is due to the

t-channel sneutrino exchange which affects only the cross
section for left-handed electron beams.
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Fig. 4. The LR asymmetries as a function of the scat-
tering angle at a c.m. energy of 800 GeV a with the set
[tan β = 3, m0 = 100GeV, M1/2 = 200GeV] and b with the
set [tan β = 30, m0 = 160GeV, M1/2 = 200GeV]: solid line
for χ̃−

1 χ̃+
1 production, dashed line for χ̃−

1 χ̃+
2 production, and

dot-dashed line for χ̃−
2 χ̃+

2 production

3.3 Polarization vectors

The polarization vector P = (PL,PT ,PN ) is defined in the
rest frame2 of the chargino χ̃−

i . PL denotes the component
parallel to the χ̃−

i flight direction in the c.m. frame, PT

the transverse component in the production plane, and
PN the component normal to the production plane. These
three components can be expressed by helicity amplitudes
in the following way:

PL =
1
4

∑
σ=±

{|〈σ; ++〉|2 + |〈σ; +−〉|2 − |〈σ;−+〉|2 − |

× 〈σ;−−〉|2} /N

PT =
1
2
Re
{∑

σ=±
[|〈σ; ++〉〈σ;−+〉∗ + |〈σ;−−〉

× 〈σ; +−〉∗]
}

/N

PN =
1
2
Im
{∑

σ=±
[|〈σ;−−〉〈σ; +−〉∗ − |〈σ; ++〉

× 〈σ;−+〉∗]
}

/N (25)

The longitudinal, transverse and normal components of
the χ̃−

i polarization vector can easily be obtained from
the helicity amplitudes. Expressed in terms of the quartic
charges, they read:

PL = 4
{

2(1 − µ2
i − µ2

j ) cos ΘQ′
1 + 4µiµj cos ΘQ′

2

+λ1/2[1 + cos2 Θ − (µ2
i − µ2

j ) sin2 Θ]Q′
3

}
/N

PT = −8
{

[(1 − µ2
i + µ2

j )Q
′
1 + λ1/2Q′

3 cos Θ]µi

+(1 + µ2
i − µ2

j )µjQ
′
2

}
sinΘ/N

PN = 8λ1/2µj sinΘQ4/N (26)
2 Axis ẑ‖L in the flight direction of χ̃−

i , x̂‖T rotated counter-
clockwise in the production plane, and ŷ = ẑ × x̂‖N .

Table 3. Values of the CP-odd quartic charge Q4 and the
normal polarization component PN for

√
s = 800 GeV and

three production angles Θ. The reference points RR1/2 have
been defined earlier; the CP angle Φµ is chosen π/2

Θ Q4 PN

RR1 π/4 −0.199 −0.333

π/2 −0.073 −0.246

3π/4 −0.044 −0.129

RR2 π/4 −0.026 −0.043

π/2 −0.010 −0.027

3π/4 −0.006 −0.013

The longitudinal and transverse components are P-odd
and CP-even, and the normal component is P-even and
CP-odd.

The normal polarization component can only be gener-
ated by complex production amplitudes, see [12]. Non-zero
phases are present in the fundamental SUSY parameters
if CP is broken in the supersymmetric interaction. Also
the non-zero width of the Z boson and loop corrections
generate non-trivial phases; however, the width effect is
negligible for high energies and the effects due to radiative
corrections are small as well. So, the normal component
is effectively generated by the complex SUSY couplings.
The bilinear charges are real in the diagonal modes (1,1)
and (2,2) so that the normal polarization vanishes. But,
the non-diagonal modes (1,2) and (2,1) may have non-
vanishing normal polarization components, determined by
the quartic charge

Q4 =
1

32c4
W s4

W

[
D2

Z(2s4
W − s2

W +
1
4
)

+DZDν̃c2
W (s2

W − 1
2
)
]

× sin 2φL sin 2φR sin(βL − βR + γ1 − γ2) (27)

When combined with the relation in (15), the unknown
sign of the product sin 2φL with sin 2φR can be elimi-
nated. The ensuing coefficient tan(βL − βR + γ1 − γ2) de-
pends on sinΦµ as evident from the definition of the four
phase angles {γ1, γ2, βL, βR} in (7). The normal polariza-
tion component is generally small. Since CP violating ef-
fects like PN or Q4 are proportional to the imaginary part
of M2µm2

W sin 2β, i.e.,the product of the MC matrix ele-
ments, they vanish for asymptotically large values of tanβ.
A few numerical examples are displayed for

√
s = 800 GeV

in Table. 3, based on the two reference points RR1 and
RR2 introduced earlier, and the CP phase Φµ = π/2.

Due to the two escaping LSPs, it is difficult to mea-
sure the normal polarization components. Nevertheless,
CP-odd observables, that are indirectly related to Q4 and
PN , may be constructed to measure the sign of sin Φµ

– the only parameter left to be determined. An exam-
ple is the triple product of the initial electron momentum
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and the two final-state lepton momenta in the χ̃±
1,2 lep-

tonic decays, O3 = sgn [pe− · (pl− × pl+)]. This observ-
able depends on the phenomenological analysis powers κ1
and κ̄2 which, however, can be measured experimentally;
therefore, the analysis does not require any knowledge of
the structure of the neutralino sector. In particular, the
observable O3, based on single-particle momenta of the
two parent charginos, does not depend on potentially CP-
violating couplings in the decay processes, see [13].

4 Observables and extraction of SUSY
parameters

4.1 Phenomenological analysis

The pair-production of the charginos χ−
i and χ̃+

j is char-
acterized by the chargino masses mχ̃±

1,2
and the two mix-

ing angles, φL and φR [besides the sneutrino mass mν̃ ].
These quantities can be determined from three chargino
pair-production cross sections and three LR asymmetries.
Nevertheless, we assume the sneutrino mass to be mea-
sured independently in sneutrino pair-production.

The chargino masses mχ̃±
1,2

can be determined very
precisely at the per-mille level near the threshold where
the production cross sections σ(e+e− → χ̃−

1 χ̃+
1 ), σ(e+e−

→ χ̃−
1 χ̃+

2 ) and σ(e+e− → χ̃−
2 χ̃+

2 ) rise sharply with the
chargino velocities.

Combining the energy variation of the cross sections
with the measurements of the LR asymmetries, the two
mixing angles φL, φR and cos Φµ can be extracted. Based
on the first parameter set in (20), we will demonstrate
that the three chargino production modes enable us to
extract unambiguously the values of two cosines, cos 2φL

and cos 2φR, by measuring only their production cross sec-
tions and LR asymmetries with longitudinally-polarized
electron beams. In the mSUGRA scenario implemented
with radiative corrections, the parameter set (20) with
tanβ = 3 leads to the following values for cross sections
and asymmetries at the c.m. energy

√
s = 800 GeV:

RR1 : σtot(1, 1) = 0.197pb, σtot(1, 2) = 0.068pb,

σtot(2, 2) = 0.101pb ALR(1, 1) = −0.995,

ALR(1, 2) = −0.911, ALR(2, 2) = −0.668 (28)

From now on we will interpret this set as experimentally
“measured values”, neglecting experimental errors for the
time being. The set3 will be exploited to pin down a unique
point in the {cos 2φL, cos 2φR} plane which leads back, in
combination with the masses, to a unique solution for the
fundamental SUSY parameters.

Figure 5 exhibits the contours in the {cos 2φL, cos 2φR}
plane for the “measured values” of the cross sections,
σtot(1, 1), σtot(1, 2) and σtot(2, 2) and the LR asymme-
tries, ALR(1, 1), ALR(1, 2) and ALR(2, 2) in the diagonal
and mixed pair-production processes. In this special case,
the χ̃−

1 χ̃+
1 mode alone gives one solution and the other

3 The large tan β set in (20) leads to the same conclusions.
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Fig. 5. Contours in the {cos 2φL, cos 2φR} plane for “mea-
sured values” of the total cross section σtot(i, j) and the LR
asymmetry ALR(i, j) for χ̃−

i χ̃+
j [i, j = 1, 2] production. The

upper frame describes the (1,1) mode, the central frame the
(1,2) mode and the lower frame the (2,2) mode. The fat dot in
each figure marks the common crossing point of the contours

contours cross at the same point which is marked by a fat
dot. In general, the cross section and asymmetry contours
intersect twice for each (ij) pair combination. However,
combining the observables of the lightest pair (11) with
the second lightest pair (12) already leads to a unique so-
lution [discarding accidental cases of zero measure] that
can be cross-checked again by measuring the (2,2) observ-
ables:

[cos 2φL, cos 2φR] = [0.67, 0.85] (29)

If the three measurements could not be interpreted by a
single [cos 2φL, cos 2φR] solution, the basic set-up of the
2 × 2 SUSY chargino system would have to be extended.

In practice, the errors in the observables mχ̃±
1,2

and
cos 2φL,R must be analyzed experimentally and the mi-
gration to the fundamental SUSY parameters must be
studied properly. This is, however, beyond the scope of
the purely theoretical analysis in this paper.

4.2 Fundamental SUSY parameters

From the two masses mχ̃±
1

and mχ̃±
2

and the mixing angles
cos 2φL and cos 2φR, the basic SUSY parameters
{tanβ, M2, |µ|, cos Φµ} can be derived unambiguously in
the following way.



676 S.Y. Choi et al.: Determining SUSY parameters in chargino pair-production in e+e− collisions

(i) tan β: The value of tanβ is uniquely determined in
terms of two chargino masses and two mixing angles

tanβ =

√√√√4m2
W + (m2

χ̃±
2

− m2
χ̃±

1
)(cos 2φR − cos 2φL)

4m2
W − (m2

χ̃±
2

− m2
χ̃±

1
)(cos 2φR − cos 2φL)

(30)

For cos 2φR larger (smaller) than cos 2φL the value of tanβ
is larger (smaller) than unity.

(ii) M2, |µ|: Based on the definition M2 > 0, the gaugino
mass parameter M2 and the modulus of the higgsino mass
parameter read as follows:

M2 = 1
2

√
2(m2

χ̃
±
2

+m2
χ̃

±
1

−2m2
W

)−(m2
χ̃

±
2

−m2
χ̃

±
1

)(cos 2φR+cos 2φL)

|µ| = 1
2

√
2(m2

χ̃
±
2

+m2
χ̃

±
1

−2m2
W

)+(m2
χ̃

±
2

−m2
χ̃

±
1

)(cos 2φR+cos 2φL)

(31)

(iii) cos Φµ: The sign of µ in CP-invariant theories and,
more generally, the cosine of the phase of µ in CP-non-
invariant theories is determined as well by the χ̃±

1 and
χ̃±

2 masses and cos 2φL,R: Using (30) and (31), cos Φµ is
obtained from

cos Φµ=

(m2
χ̃

±
2

−m2
χ̃

±
1

)2−(M2
2 −|µ|2)2−4m2

W
(M2

2+|µ|2)−4m4
W

cos2 2β

8m2
W

M2|µ| sin 2β
(32)

As a result, the fundamental SUSY parameters
{tanβ, M2, µ} in CP-invariant theories, and
{tanβ, M2, |µ| cos Φµ} in CP-noninvariant theories, can
be extracted unambiguously from the observables mχ̃±

1,2
,

cos 2φR, and cos 2φL. The final ambiguity in Φµ ↔ 2π−Φµ

in CP-noninvariant theories must be resolved by measur-
ing observables related to the normal χ̃−

1 or/and χ̃+
2 po-

larization in non-diagonal (1,2) chargino pair-production
[7].

5 Comment on the neutralino sector

Due to the large ensemble of four neutralino states
[χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4] in the bino-wino-higgsino sector, the anal-

ysis is much more complex in this case. Nevertheless, after
measuring the SU(2) gaugino mass M2 and the higgsino
mass parameter µ (including the phase) in the chargino
sector, the symmetric MSSM neutralino mass matrix

MN =




|M1|eiΦ1 0 −mZsW cos β mZsW sinβ

M2 mZcW cos β −mZcW sinβ

0 −|µ|eiΦµ

0


(33)

involves only two unknown parameters: the modulus and
the phase of the (complex) U(1) gaugino mass M1 =
|M1|eiΦ1 .

Deferring the detailed analysis for a CP-noninvariant
theory to a sequel of this paper, [14], the analysis of CP

invariant theories is much less complex4. Since M2
N is

symmetric and positive, an orthogonal matrix N can be
constructed that transforms M2

N to a positive diagonal
matrix. This mathematical problem can be solved analyt-
ically.

Introducing the four-set of invariants associated with
M2

N ,

A = trM2
N = M2

1 + M2
2 + 2µ2 + 2m2

Z

B = 1
2 [(trM2

N )2 − trM4
N ]

= (µ2 + m2
Z)2 + 2µ2(M2

1 + M2
2 ) + M2

1 M2
2

+2m2
Z [c2

W M2
1 + s2

W M2
2 − µ sin 2β(c2

W M2 + s2
W M1)]

C = 1
6 [(trM2

N )3 − 3trM2
N trM4

N + 2trM6
N ]

= µ2[µ2(M2
1 + M2

2 ) + m4
Z sin2 2β + 2M2

1 M2
2 ]

+m4
Z [c4

W M2
1 + 2c2

W s2
W M1M2 + s4

W M2
2 ]

+2m2
Zµ2(c2

W M2
1 + s2

W M2
2 )

−2m2
Zµ sin 2β[c2

W M2(µ2 + M2
1 ) + s2

W M1(µ2 + M2
2 )]

D = detM2
N

= µ4M2
1 M2

2 + m4
Zµ2[c4

W M2
1 + 2c2

W s2
W M1M2

+s4
W M2

2 ] sin2 2β

−2m2
Zµ3M1M2[c2

W M1 + s2
W M2] sin 2β (34)

the consistency condition

m8
χ̃0

1
− Am6

χ̃0
1
+ Bm4

χ̃0
1
− Cm2

χ̃0
1
+ D = 0 (35)

must be fulfilled by the lowest of the eigenvalues m2
χ̃0

1
.

Since mχ̃0
1

can be measured precisely in chargino decays
[4],

χ̃±
1 → W± + χ̃0

1 (36)

i.e.,with an error of O (100 MeV), (35) is a well-determined
quadratic form that can be solved for M1 up to a 2-fold
ambiguity. Moreover, it has been shown in [15] that, in fact
without using further experimental input, the ambiguity
can be removed by linearizing the consistency conditions
in MN instead of M2

N in a somewhat involved mathemat-
ical procedure.

6 Conclusions

We have analyzed how the parameters of the chargino sys-
tem, the chargino masses mχ̃±

1,2
and the size of the wino

and higgsino components in the chargino wave-functions
parameterized by two angles φL and φR, can be extracted
from pair-production of the chargino states in e+e− an-
nihilation. In addition to the three production cross sec-
tions, longitudinal electron polarization, which should be

4 If M1 and M2 are real at the same time, which may be real-
ized approximately in grand-unified scenarios, the subsequent
analysis is modified only slightly to the extent that µ2N+1 is re-
placed by |µ|2N+1 cos Φµ while even powers of µ are not altered
except for the substitution µ2N → |µ|2N .
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realized at e+e− linear colliders, gives rise to three inde-
pendent LR asymmetries. This method is independent of
the chargino decay properties, i.e., the analysis is not af-
fected by the structure of the neutralino sector which is
very complex in extended supersymmetric theories while
the chargino sector remains isomorphic to the simple form
of the MSSM.

From the chargino masses mχ̃±
1,2

and the two mixing
angles φL and φR, the fundamental SUSY parameters
{tanβ, M2, µ} can be extracted in CP-invariant theories;
in CP-noninvariant theories the modulus of µ and the co-
sine of the phase can be determined, leaving us with just
a discrete two-fold ambiguity. The ambiguity can be re-
solved however by measuring the sign of observables re-
lated to the normal χ̃±

1,2 polarizations.
Moreover, from the energy distribution of the final par-

ticles in the decay of the charginos χ̃±
1 , the mass of the

lightest neutralino χ̃0
1 can be measured. This allows us to

derive the parameter M1 in CP-invariant theories so that
the neutralino mass matrix, too, can be reconstructed in
a model-independent way.

In summary: the measurement of the processes e+e−
→ χ̃−

i χ̃+
j provides a complete analysis of the fundamental

SUSY parameters {tanβ, M2, µ} in the chargino sector.
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